Utilizing the ground water to your advantage –

Ruden AS

Ruden Energy

Ruden Water

Ruden Geo Services

Ruden Energy

Innovative solutions for geo-energy

Local needs

2-60°C

Heating and cooling of buildings and infrastructure

Regional needs

60-140 ° C **HEAT**

Storage of surplus heat with seasonal variations

National needs

Storage/generation of electricity

LEAT – Low Enthalpy Aquifer Technology

Open loop geo-energy system

Geo-energy system that uses groundwater as energy source

- Utilization of fractures
- Effective
- High effect (KW)
- Savings
- Proven concept

Effective utilization of shallow geothermal energy – ongoing projects

Campus Bø USN, Bø

75 kW, heating and cooling 2 wells replacing ~10 wells*

4-5 MW, heating and cooling 20+100 wells replacing ~450 wells*

Økern Portal, Oslo

0.85 MW, heating and cooling 18 wells replacing ~300 wells*

Asker Panorama

2 MW, heating and cooling run by 10 wells replacing ~250 wells*

Wesselkvartalet

Project details

- 260 Parking spaces
- 52 Appartments
- 1970 m² Commercial
- 5650 m² Offices
- Connected to the pavement-heating system of the municipality

WESSEL

Wesselkvartalet

Hybrid geo-energy system

Stacked aquifer & battery

- Energy reservoir 2-18m
- Energy aquifer: 20-400m

Energy output

- Heating and cooling
- Pavement-heating (snow melting)
- 12MW peak effect

Well logging -understand reservoir properties

- Identify and characterize fracture networks
- Lithology flow properties
- Develop geological models and simulations

3D representation of the subsurface

Well testing and well stimulation

- The capacity of the reservoir
- How much energy can we extract without influencing ground water level
- Can we circulate/reinject fluids
- Increase capacity by hydraulic stimulation

Innovative solutions for heating and cooling of buildings and energy storage

Local needs

Heating and cooling of buildings and infrastructure

Regional needs

Storage of surplus heat with seasonal variations

National needs

Storage/generation of electricity

Geothermal storage

Need:

Storage required for a wide range of time scales, ranging from seconds to months, as well as storage sizes, ranging from tens of kWh to tens of GWh

Challenge:

- Energy supply from renewable subject to fluctuations.
- Do not match the instantaneous energy demand and energy base load

Solution

- Develop energy storage to dampen fluctuations and to compensate for times of low power production.
- By taking up surplus power, energy storage also contributes to grid stability in times of high renewable energy production.

Digitalization of multi-reservoir geothermal systems for optimal control of heat production, storage and peak-load management.

- IPN- project Developing tools to model ground water system
- MRST Matlab resevoir simulation toolbox Sintef
- Platform to optimize design and both short and long term management of complex geothermal systems

Ansvarlig organisasjon: Ruden AS

Partnere: SINTEF

Prosjektperiode: 2020-2023

Type: Innovasjonsprosjekt for næringslivet

Offentlig finansiering: 6.75 MNOK/totalprosjekt 10 MNOK

Prosjektnummer: 309651

Tromsø pilot project

Project goals

• Effect: 5 - 9 MW

• Injection: > 140 °C

• To be retrieved: > 65 °C

Inject: 28 GWh each year

Recover: 10+ GWh each year

Number of wells: 15

Max well depth: 300 m

The HEAT technology

HEAT Kvitebjørn varme

- ✓ Pilot phase finalized TRL 5
- ✓ Underground reservoir characterization- challenges identified
- ✓ Technology need from Oil and gas Industry Established collaboration
- ✓ Simulation and modelling tools under development through RCN funding (IPN)
- ✓ RFF funding to identify risk and potential innovation/research topics
- ✓ Full scale development planned during 2022

